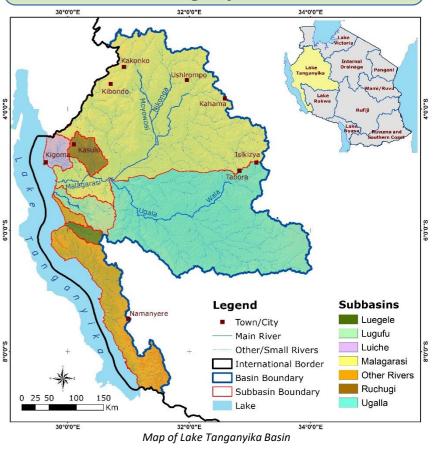
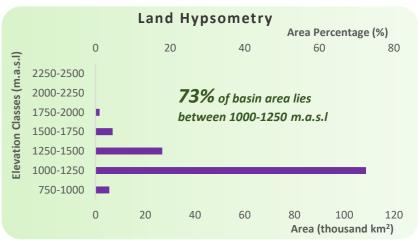

Lake Tanganyika Basin Water Demands Key Figures

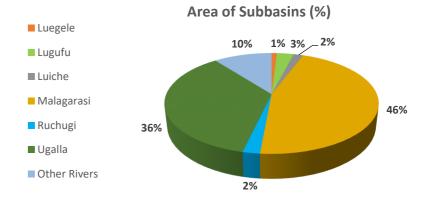
The Falkenmark Water Stress Indicator		
Available Renewable Water per Capita (m³/yr)	Indication	
< 1700	Water Stress	
< 1000	Water Scarcity	
< 500	Absolute Water Scarcity	
77% of people in Lake Tanganyika Basin are experiencing water stress.		

Ecosystem is the largest water user in Lake Tanganyika Basin. About 32% of the renewable water resources in the basin is required for replenishment of environmental demands, and less than 5% is currently utilised for domestic, industries, irrigation, and livestock sectors. In the latter portion, Irrigation sector accounts for about 47% of human-consumptive uses, which makes it the second rank in water demands, followed by domestic water uses making up 38% of human water uses in the basin.

Physiographic Profile	
Land Area	160,800 km ²
No. of Sub-basins	7
No. of Major Lakes	4
Protected Areas	
No.	184
Area	82,654 Km ²
Dominant Soil Texture	Sandy (Clay) Loam
Dominant Productive	Migmatite/
Formation	Granitoide/ Meta-
	Sediment Complexes
Mean Vegetation Index	0.34
Forest Cover Change	-0.56 %/yr
(2000-2015)	
Average Slope	4.4%
Altimetry	
Highest:	2,474 m.a.s.l*
Lowest:	760 m.a.s.l
Mean Elevation	1,200 m.a.s.l

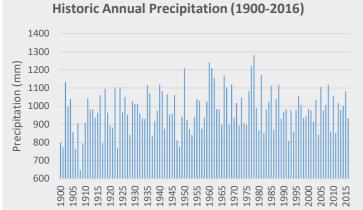

^{*} m.a.s.l: meters above mean sea level

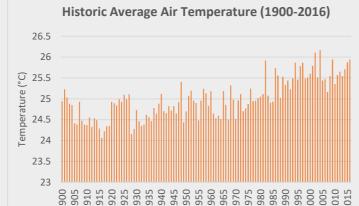

Socio-Economic Profile (2019)		
Population	6.95 million	
Population Density	43 person/km ²	
Water per Capita	1,928 m³/yr	


Hydro-Climatic & Water Resources Profile*		
Average Precipitation	1,007 mm/yr	
Average Temperature	25.0 °C	
Average Evapotranspiration Potential Actual	1,420 mm/yr 821 mm/yr	
Average Renewable Water Resources Surface Water Groundwater	13,396 mcm/yr 10,641 mcm/yr 2,755 mcm/yr	
Water Demands Averaged Total Human Consumptive	4,860 mcm/yr 572 mcm/yr	
Water Resources Vulnerability Index	4.3 %	

^{*} According to Lake Tanganyika Basin IWRMDP, 2015

Water Resources Fact Sheet Lake Tanganyika Basin




Tanzania mainland is comprised of nine hydrologic basins. Lake Tanganyika Basin is the 2nd largest basin that encompasses about 17% of the area of the country. The basin is stretched from central parts of Tanzania to the west and alongside the western borsers, where Lake Tanganyika is located. Being the upstream headwaters of Congo River, Lake Tanganyika is shared between Tanzania, Congo, Burundi, and Zambia.

Water Resources Division

Lake Tanganyika Basin Water Resources Key Figures

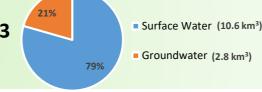
Averaged for Lake Tanganyika Basin; Source: Climatic Research Unit, University of East Anglia, UK, http://www.cru.uea.ac.uk/data

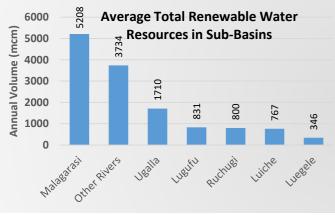
Long Term Rainfall Variation	
Rainfall Average 1900-1930	966 mm
Rainfall Average 1985-2016	1,008 mm
Difference in Long-term Average	+42 mm

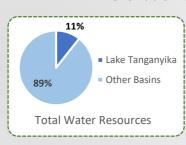
Difference in Rainfall*: + 4.4%

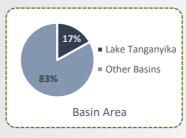
Temperature Average 1900-1930 24.65 °C
Temperature Average 1985-2016 25.58 °C
Difference in Long-term Average + 0.94 °C

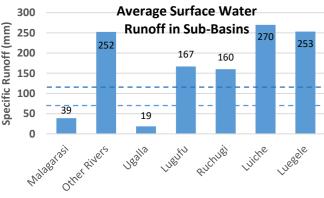
Difference in Temperature*: + 3.6%


Long Term Temperature Variation


* Over 85 Years (30-yr average values, centered on 1915-2000)


Share of Lake Tanganyika Basin in Tanzania's


Renewable Water Resources


Annual Renewable Water Resources: 13.4 km³ (inside Tanzania borders)

Average Country-wide Specific Runoff: 111 mm

Average Lake Tanganyika Basin's Specific Runoff: 67 mm

There is a large variation of runoff production within different sub-basins in Lake Tanganyika Basin:

- Luiche sub-basin as high as 406% of average
- Ugalla sub-basin as low as 28% of average

Lake Tanganyika Basin receives in average an annual precipitation of 161 km³ out of which as much as 147.6 km³ returns back to the atmosphere and about 13.4 km³ (8%) turns into surface and ground water as renewable freshwater resources.

Water Resources Division

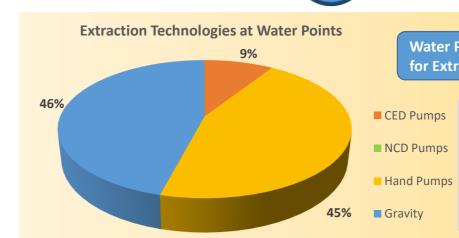
Lake Tanganyika Basin Water Infrastructure Key Figures

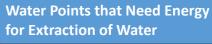
Water Infrastructure Profile	
Water Points	
No. of Water Points	9,374
No. of Taps	12,214
No. of Monitoring Stations:	
Weather	15
Rainfall	14
Hydrological	32
Hydrogeological	1
No. of Dams and Reservoirs	60
Reservoirs Capacity	55.7 mcm
Irrigation Schemes	
No.	117
Area	6,501 ha
Irrigation Efficiency	25%
Main Crops (irrigated)	Maize, Sorghum, Wheat, Beans

l,

2% 3% 4%
20%
23%

Borehole
Spring
Lake
Rainwater Harvesting


Shallow Well
River/ Stream
Dam


Water Points by Sources of Water

Average Gross Area per Water Point: 17 km²

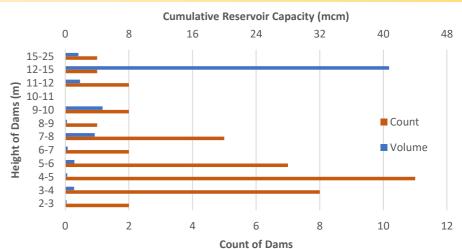
Water Points Supplied by Groundwater and Springs

66%

Gasoline & Diesel)

CED Pumps: Conventional Energy-Driven Pumps (includes Thermal Electricity, Hydroelectricity,

NCD Pumps: Non-Conventional Energy -Driven Pumps (includes Solar Electricity, Windmill)


Hand Pumps: (includes Lever Pumps, Mono Pumps, Rope Pumps, Play Pumps)

Statistics of Dams in the Basin

Functioning Water Taps: 7,742

There are 60 man-made dams constructed in Lake Tabganyika
Basin with a total reservoir capacity of 55.7 mcm.

The largest reservoir pertains to Igombe Dam with a height of 12 m and capacity of 40.7 mcm constructed on Kigozi River in Tabora Region.

Water supply access in Tanzania – mainly in rural areas – is realised through "water points", i.e. usually a public place for people to obtain clean water.

Water from water points is potable water consumed for the people or livestock. Means of access to water at the supply points are usually in form of communal standpipes. However, other shapes of access to water are present such as water kiosks, water tanks, hand pumps, developed or undeveloped springs, and cattle troughs.